## **Update on final LAV front-end**

M. Raggi, T. Spadaro, P. Valente & G. Corradi, C. Paglia, D. Tagnani



## Front-end board (scheme)



## Front-end board (specs)

#### Motherboard

- standard VME 9U mechanics, 400x400 mm<sup>2</sup>
- manages all input and output connections
- non standard power supply,  $\pm 5 \text{ V} \pm 12 \text{ V}$
- no VMEbus

#### Daughter boards

- 16 daughter board housing 2 channels of the ToT discriminator/LVDS driver
- 8+2 daughter boards for the 4-channels and 16-channels analog sums
- 1 daughter board housing the DAC and ADC and the slow controls.
- This design minimizes the cost in term of spare

• All the slow control and communication functions are implemented using CANOpen standard in agreement with present CERN standards



## Something like this...





### **Analog sum architecture**





## Analog sum output

- 1 FEE board serves 32 channels = 1 layer
- 32×2 thresholds = 64 LVDS outputs
- 32 analog outputs can not be housed (not enough room on the panel):
  - sum 4 analog signals (e.g. 1 "banana")
  - sum 4 bananas (16 channels = half a layer)
  - Coax 50 Ω, Lemo-00





## **Threshold circuit**

- Two thresholds per channel
- Remotely programmable (CANOpen)
- Common threshold with trimmer *(for redundancy, jumper-selectable)*
- 0-500 mV range, 12 bit resolution (standard low-cost components, more than enough)
- 2 LSB stability
- Easy to implement automatic threshold scan



## **Pulsing system**

- Provide a **test pulse**:
  - free-running (controlled by local CPU)
  - or on external trigger
  - pulse all channels or a programmable pattern
    - 10-50 ns programmable width
    - 10-500 mV programmable amplitude
    - Useful to check time-over-threshold performance
    - Ensure width and amplitude stability at 1% level

#### Other diagnostics on-board:

- monitoring of the voltage
- monitoring of the board temperature



#### Crates

#### 1 LAV station:

- VME 9U non standard crate housing
- 5-8 FEE boards (160-256 channels)
  - $\pm$ 5 V  $\pm$ 12 V power, no standard VME bus
- LED drivers (5-8 if 32 channels)
- HV control
- 1 TELL1 (512 TDC channels), 2 slots (need also 3.3V and 48V)

Our proposal:

ask for modification of **Wiener 6023 crate** in order to accommodate TELL1 (only 3U power backplane)

+ 3 standard 6U VME slots





# L0 primitives

- Ring primitives (circle of N blocks)
  - $E_{bl} = Reconstructed charge in a block$
  - $E_{ring}$  = Sum of the energy of all 32 blocks in the ring
  - $N_{ring}$  = Number of blocks above threshold in the ring
- Station primitives
  - $E_{tot}$  = Total energy of all blocks in the LAV station
  - N<sub>tot</sub> = Total number of blocks above threshold in the station
  - $N_{cl}$  = Total number of clusters using a proximity algorithm



# L0 primitives

- Ring primitives (circle of N blocks)
  - $E_{bl} = Reconstructed charge in a block$
  - $E_{ring}$  = Sum of the energy of all 32 blocks in the ring
  - $N_{ring}$  = Number of blocks above threshold in the ring
- Station primitives
  - $E_{tot}$  = Total energy of all blocks in the LAV station
  - N<sub>tot</sub> = Total number of blocks above threshold in the station
  - $N_{cl}$  = Total number of clusters using a proximity algorithm



## **Time resolution test beam**



 $T_0 = T_L - L_{THR} \cdot \frac{T_H - T_L}{H_{THR} - L_{THR}}$ 

Time Resolution after slewing: 750 ps resolution on  $\Delta T=T_1-T_2$ 500 ps for a single block

- MIP signals (single station):
  - 4 or more blocks
  - we will get ~350 ns
- Electron shower:
  - 16-20 blocks
  - We will get 150 ps



## **Single station information**

- Using the information of a single LAV station
- 1) MIP trigger (identify MIP( $\mu$  or  $\pi$ ) from e<sup>-</sup> and  $\gamma$ )
  - $N_{ring} < 2$  for each of the five rings
  - $E_{bl}(i) < 250 \text{ MeV}$  for each block over threshold
  - 0.5 <  $E_{ring}$  (i)/ $E_{ring}$  (i+1) < 2 for each two rings
  - $N_{cl} = 1$  only one cluster in the LAV station
- 2) High multiplicity trigger (identify high energy showers in the station)
  - N<sub>tot</sub> > 15 OR E<sub>tot</sub> > 20 GeV
  - $E_{ring} > 2.5 \text{ GeV} \cdot N_{ring}$  for al least 2 rings
  - N<sub>cl</sub> > 2 more than 2 clusters in the LAV station



## **Hit multiplicity during October test** beam





## Whole LAV information

- When the information of all LAV stations are collected (need inter-board communication)
- Particle time (@ ANTI-A12 position?)
- Particle total energy deposit
- Total energy deposit in each of the crossed stations
- Phi position (@ ANTI-A12 position?)
- Total number of crossed stations
- Total number of hits in each crossed station

How do we divide this two steps into trigger levels? Who (TELL1s or PCs) will be charged with the computation?



## Whole LAV information

- When the information of all LAV stations are collected (need inter-board communication)
- Particle time (@ ANTI-A12 position?)
- Particle total energy deposit
- Total energy deposit in each of the crossed stations
- Phi position (@ ANTI-A12 position?)
- Total number of crossed stations
- Total number of hits in each crossed station

How do we divide this two steps into trigger levels? Who (TELL1s or PCs) will be charged with the computation?



## Conclusions

- FEE boards in production, expected delivery **end of July** (just in time for the August test-beam)
- Keep FEE board cost ≤ 3000€
- Need to finalize final TDC cable choice
- Crate choic
- It's time to start LAV trigger studies
  - Can profit of august test beam on ANTI-A2







### **Front-end board (single channel)**





## **Front-end board prototype**

#### Prototype board

- 16 channels
- VME 6U mechanics
- Manual threshold control
- 4 by 4 channels threshold
- Single channel analog output
- Successfully tested at NA62

beam-test (Oct. 2009)





### **Board connections**

- 8 Analog sums of 4 channels
  2 Analog sums of 16 channels
  10× Lemo-00 on front panel
- 32 analog inputs from flange
   DB37 connector
  - 64 LVDS outputs to TDC
    2× Robinson-Nugent (1.27 mm)
- 1 Rj11 connector for communication CAN-OPEN

